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RESEARCH MEMORANDUM

APPLICATION (OF STATTSTICAL THEORY TO BEAM~RIDER
GUIDANCE IN THE PRESENCE CF NOISE.
I - WIENER FILTER THEORY

By Elwood C. Stewart
SUMMARY

A study has been made of the application of Wiener filter theory to
the design of & beam~rider guldence system operating in the presence of
glint nolse. Target and missile motions are restricted to the same plane.
The Wiener theory is then used to establish the theoreticel lower limit
of root-mean-square error snd the corresponding desired transfer-function
- characteristics. It is shown that although the practical achievement of

these results is restricted by saturation effects, the theory is useful,
with sultable modifications, as a guide in system design. Such modifica~
tions have been applied to the design of systems for which the optimum
flltering is placed either in the missile~control system or in the tracking
radar. The error performsnce of these systems for different noise magni-
tudes is presented. Other considerations such as servo energy requirements
are briefly discussed.

INTRODUCTION

In the design of a missile-guidance system certain standerd criteria,
such as the fastest response, are not always the most useful. This is
particulerly true in the case of guidsnce systems which are forced to
operate in the presence of certain random unwanted disturbances known as
noise. The reason for this is that the effects of the noise can seriocusly
reduce the probabllity that the missile will hit the target. Furthermore,
the sources of noise, being dependent on the target characteristics, can-
not be eliminated. Consequently the guidance system should be designed
to minimize the miss distance even when the noise is present. This prob-
lem will be considered here,

< There are-two possible design epproaches., In the first, the form
of the systeg’(i.e., the transfer functlon) is assumed snd an attempt is



Security Classification of This Report Has Been Cancelled

2 cOEEmRNESN . - NACA RM A55E1L

made to adjust the existing parameters so as to reduce the effects of

noise (ref. 1). This procedure is not only difficult to apply, but the )
ultimete performance is limlited by the assumed form. In the second '
approach, the form as well as the parameters of the transfer function

are determined so that the nolse has the  least possible effect on the

performance of the missile; an attempt is then made to devise & system

which has a transfer function approximating this cptimum transfer func-

tion. The latter approach will be adopted here.

The problem of determining optimm trensfer functions has been
encountered previously in the communicstion field, and as a result of
this encounter a statistical theory knowr as Wiener filter theory has
been developed. By the use of this theory it is possible to determine a
unique optimum transfer function which will result in a theoretical lower
limit of mean-square error between the desired snd the actual missile
position. Very little work has been done in the spplication of this
theory to beam-rider guidance. Previous works, references 2 and 3, have
been confined to simple homing systems. The purpose of the present paper,
however, will be to investigate the applicability of thies theory to a
beam-rider guldaence system.’

In the application of this theory to missile guidamce 1t 1s necessary
to make certaln assumptions. Foremost of these is the assumption that the
target and missile move in the same plane, taken in this report to be -
horizontal. Other assumptions, such as those relsting to the class of
target maneuvers and nolse, are discussed in the text. Within these
restrictions, however, the theory mey be used to cbtain a measure both
of the error performence that might be expected and the difficulties to
be overcome in order to reslize this performance.

SYMBOL.S
N nolse magnitude or zero frequency spectrel density, £t2/radian/sec
Ty - time constant of the noise spectrum shaping filter, sec
Yo optimum closed=loop transfer functlon ... o . e -
a acceleration of target maneuver, ft/sec2
k twice the average switching rate of target acceleration, l/sec
Yy apgi.rent target displacement from true target center due to noise, “
migsile displacement from a space reference, ft "
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Y target displacement from a space reference, ft
? ox gpectral density of noise displacement yn» ftg/radian/sec
@ spectral density of target displecement Vs ftz/radian/sec
€ error between target and missile position, Yp = Yy ft
S component of error € due to noise, £t
€m component of error € due to target motion, ft
(3] control-surface deflection, radians
s angle of yaw, radians
Ko optimum open~loop transfer function
uw open-loop transfer function of system approximation to pg
. w angular frequency, radians/sec
n - GENERAL: CONSIDERATIONS

Of the many sources of noise which mey exist in a guidance system
utilizing radasr detection, glint noise is one of the most serious. Glint
noise is a term that is used to describe a shift in the apparent center
of a target as determined by a tracking radar. It is due basically to
the variable reflection characteristics of aircraft targets and arises
from the relative movement of the verious reflecting surfaces. Since the
radar utilizes the reflected signal to determine tasrget position, vari-
ations in the reflected signal are interpreted by the radasr as s shift
in the target center. This type of noise is particularly important since
it is due fundamentally to the target cheracteristics and therefore cannot
be eliminated by eny known radar improvements. The situation is illus-
trated in figure 1(a) where the true terget position is indicated as ¥,
and the glint noise is represented by the displacement Y-

The present report 1s restricted, for the sake of simplicity, to a
two~dimensionel study in which the target and missile move in a horizontal
plane.t The guidance system 1s considered to be of the beam-rider type,
illustrated in figures 1(a) and 1(b). It should be noted here that dis-
placements are referred to a fixed space reference. The function of the
guidance system is to meke the missile position Yy coincide as closely

iThe complete three-dimensionsl problem would require a more complex
s analysis than used herein. Possibly either the present theory or Wiener's

theory for multiple time series (ref. LIt) could be applied to this case.
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as possible with the actusl tearget position y,. This requirement would
be relatively easy to satisfy if the tracking radar could locate the _
target precisely. However, because of the radar noise the only informa-
tion available to the guldance system is the apparent target position as
illustrated in figure 1(b). For this reason the task is much more diffi-
cult and the missile position may deviate comsiderably from the actual
target position. The dlfference, ym =~ ¥y, i8 denoted on this figure by
the error €, which should be minimEzed n some manner.

A sultable criterion for Jjudging system performance depends primarily
on the msnner in which the system operates. In the case of the beam-rider
system the missile-to-target range is not normelly transmitted to the
misslle so that the missile cannot know when the target will be reached.
Hence the error should be minimized for all values of range or, equiva-
lently, of time. A mathematically convenlent criterion which does not
involve welghting with respect to missile travel time is the mean-square
time averasge of the error. This criterion will be used herein.

The design of a system normally depends on the inputs to be encoun-
tered, in this case the target motion and nolse. Because of thelr random
nature 1t is not convenient to define these quantities explleclitly as
functions of time, and statistical descriptions aere more suiltable. Since
it is generally believed that the target motion and nolse are uncorrelated
they will be described independently. What follows 1s a brief discussion
of these inputs. :

Intensive effort has been devoted in recent years to the measurement
of radar glint noise. References 3 and 5 through 8 are typical of such
work., The quantlty of most general interest in these measurements is the
displacement of the spparent center of the target from the true center,
or ¥y shown in figure 1(a). This quantity can be defined statistically
by mesns of (1) the amplitude distribution and (2) the power spectral den-
sity. Although the determination of these gquantities is somewhat uncertain,
it 1s generally found that the smplitude distribution 1s approximetely
Gaussian and that the spectral density can be adequately represented by

N .
Oy = a2 1
¥ mPe® 1 (2)

Spectra obtained from eny one individual experiment may deviate scmewhat
from this form but 1t 1s generally considered that the above character-
istic represents a reasonsble average of meny different experiments.
Examination of nolse spectra indicates that the bresk point (l/QﬂTN) is
on the order of several cycles per second and for this report will be
taken to be 6 cps corresponding to Ty = 0.0265 second. The magnitude
of the spectrum, N, depends on factors such as target slze and target
aspect so that the guldance system 1s usually forced to operate over a
wide range of magnitudes. This range may extend from 7 ft2/radian/sec
for small targets up to around 30 f£t2/radian/sec for large bombers,
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Because of the variation in msgnitude due to uncertainty in target size
and aspect as well as uncertainty in the noise measurements, this factor
- becomes of real and practical importance and wlll be considered herein.

In considering terget maneuvers it is difficult to say exactly how
& target will maneuver when under sttack. However, a reasonable situa-
tion might be one in which the target is merely aware of the attack and
therefore maneuvers in some severe manner to avoid being hit. Here it
will be assumed that the target marneuvers laterally with maximum acceler-
ation alternately in opposite directions. The duration of each acceler-
ation will be a random function determined by some distribution. A
reasonable distribution which leads to an easily handled spectral density
is the Poisson distribution [(1/T)exp(-T/T)] where T represents the time
and T +the aversge time between switching of the sccelerstion. As shown
in reference 9 the spectral density of the target acceleration 1s then
described by

0 = —— kB2
Yo (w2 + k2)

Here the quantity &a represents the megnitude of the target acceleratign
. normsl to the beam, and k 18 twice the average switching rate, k = 2/T.
The spectral density of the target displacement is then given by

a2

= = k

It would appear that there is a problem here concerning the existence of
this spectral density becsuse of the w% 1in the denominstor. However,
it can be shown that it is possible to use thils representation for pur-
poses of computations (see Appendix A). For the tail-chase msneuver to
be used in a later example the target accelerstion is specified to be
t1 g at an average period of 5 seconds, which gives a = 32.2 ft/sec2
and k = 0.4 switch/sec.

It should be pointed out that a system design based on the target
motions described above would operate well against this class of maneuver
a8 a whole. This appears to be a desirable procedure. Nevertheless,
without altering the parameters this system would not be expected to
operate as well as it could egainst one particular target maneuver such
es a single target turn. Even then, however, it can be shown by simu-
lation studies that systems optimized for the statistical maneuver used
herein are essentislly optimum for the single turn maneuver as well.
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ANATYSIS, RESULTS, AND DISCUSSION

The Wiener Fillter Theory

The problem of minimizing the effects of noise can be considered to
be one of compromise. At one extreme for which the system response is
fast the error becomes large because of the ability of the missile to
follow the noise too well. At the other extreme for which the system
response 1ls too slow the error becomes excessive because of the difficulty
the missile has in following the target maneuvers., The optimum system 1s
one which will compromise these two situations in the best possible man-
ner. More precilsely stated the problem becomes: Glven the statistical
characteristics of the two input quantities, target motion and noilse,
what 1ls the optimum transfer function which will minimize the mean-square
error €22 The answer to this problem can be determined by a statistical
theory known as the Wiener filter theory. The flnal result of this theory
is an integral which when evalusted represents the optimum linear transfer
function. This transfer function is glven by

tw) = —31 ® % ® ¢T(m)eimt
Yo(1w) = 2n¢+(w)¥Z: e Wl; o (a) da. dt (3)

In this equation o' and @~ have the following meaning: If & is the
spectral density defined by the equation . .

® = Op + Oy

then 0 and ¢~ must satisfy

ot ¢” =0
where &% has poles end zeroes only in the upper half of the complex w
plane and &  only in the lower. More detalls are given in Appendix A.
The derivation of equation (3) is beyond the scope of this report; for
this derivation see references U4 and 10.

The transfer function Y, of equation (3) 1s a mathematicsal repre-
sentation of the box in figure 1(b). According to the method of deriva-
tion, the transfer function must be physically realizable which means
that the system 1s not required to respond to an input before that input
occurs.

It might be polnted out that a general solution exists which involves
the problem of prediction as well as filtering, However, pince it is
apparent fram figure 1{a) that we are interested only in the missile
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position coinciding with the present target position, the prediction aspect
hes been eliminated from the genersal solution in writing equation (3).

Restrictions involved in the theory.- There are certain restrictions
implicit in the derivation of equation (3) so that the validity of its
application to the beam-rider guidence gystem depends on how well these
restrictions are met. First, the input quantities, target motion and noise,
must be stationary random series (see ref. 1 for a detailed definition) and
be defined by corresponding power spectra which are continuous. A discon-
tinuity in the spectrum might be due to a predictable component such &as a
sine wave; such components must be eliminated from the input before the
theory can be gpplied. It is generally believed that displecements at the
target are aspproximately stationary random series (ref. 3). Since the
beam-rider system operates from these displacements, the inputs to the
beam-rider system are also statlonary rendom series. (In contrast, the
inputs to a proportional-navigation guidance system are nonstationary ran-
dom series since angular inputs are measured by the missile itself and the
angles tend to become larger as the range decreases.) Second, the solution
is based on linear theory and furthermore 1s spplicable only to a system
with constant coefficients in its differential equation. On the other
hand, the kinematic loop of guidance systems generally involves a time-
variable range factor. In particular for the beam-rider system, the time-
veriable factor is the ratio of the launcher-to-misslile and the launcher-
to~target ranges. However, since the miss is determined primarily by what
happens near the end of flight, during which the variation in this ratio
is smell, it is reasonable to assume that the requlrement of constant
coefficients is approximately met.

Evaluation of the optimum transfer function.- Within the zbove
restrictions, it is possible to use equation (3) to evaluate Ffirst, the
general form of the optimum transfer function and second, the numerical
constants. As an illustration of thlis method the theory has been applied
with certain simplifying assumptions as discussed in Appendix A to the
target motion and noise characteristics described earlier. For this case,
then, equation (3) can be evaeluated to give the general form of the optimum
closed-loop and corresponding open-loop transfer functions as follows:

(Te®s® + 28, Tas + 1) ()

Yo(s) =
(TBS + 1) (1,282 + 28, Tys + 1)
_ (T282 + 28, Tqs + 1)
Ho(s) = Xy 2 (Toe + 1) (5)

These equations can be evaluated for any specific case and, as an example,
for the specific target motion and nolse cheracterlistics given below
equation (2) and with the magnitude of the noise, N, chosen to be

15 ft2/radien/sec, the optimum transfer functions become
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(0.855 82 + 1.41 8 + 1) (6)
(0.687 s + 1)(0.490 82 + 0,727 8 + 1)

Y-'0(9) =

(0.855 s + 1.41 & + 1)
82(2.50 8 + 1)

F-lo(s) = T.h2 (T)

The chosen value of N represents a mid-value between the expected
extremes, The significance of this choice willl be discussed later.

The corresponding frequency characteristics are possibly more illus-
trative to the control designer. The solid curves in figure 2(a) show
the optimum closed-loop characteristic for the sbove conditions and
describe the characteristics of the box in figure 1(b). It might be noted
that since the break point of the noise spectrum occurs at 6 cps, it is
essentlally flat over the frequency range of importance of the optimum
transfer function. 8ilnce actusl systems are usually designed on an open-
loop basis, the corresponding open-loop charsascteristic is shown in fig-
ure 2(b). The considerations involved in achieving the characteristics
of figure 2 are discussed in later sections.

RMS error performance.~ Although the Wiener filter theory can be used
to define the optimum transfer function, it does not give the minimum
error directly. This must be evaluated from the optimum transfer function.
With the earlier assumptions as to the form of the target motion and noise,
reference 1 shows that the total mean-square error is camposed of target
end noise components which can be evaluated according to equation (8).

e2 = &P + EEE
=fw|1 - Yo(iw) |28 (w) dw +”f | Yo (1w) | Py (w)dw (8)

The quantity Yo(iw) is obtained from equation (4) by the substitution
8 = lw. It is possible to evaluate these integrals mathematically but
experience has shown that it 1s easier and more instructive to use
graphical techniques. For the example under discussion, evaluation of
equation (8) gives: : ¥

Neg? = 13.7 feet

JeT? = 6,7 feet
Je = 15.4 feet
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The later figure represents, then, the theoretical lower limit of rms
error that can be achieved by a linear constant-coefficient transfer
function corresponding to the assumed target and noise characteristics.

For later use, the integrands of equation (8) for the previous
example are plotted in figure 3. Physically, these curves can be inter-
breted as the frequency distribution of the energy in the components of
error. It is seen that the error energy is concentrated in the frequency
range below 2 cps.

As mentioned earlier, it is important to consider a lsrge range of
noise magnitudes for a number of reasons. TFor exemple, measurements of
glint noise are subject to considerable discrepancy and may cover a wide
range of masgnitudes, Likewlse, the noise magnitude may vary due to
different sized targets or different attack aspects. In order to assess
these effects the minimum error has been determined as a function of the
zero frequency noise magnitude N of equation (1) by a procedure identical
to that above., This requires the determination of a different transPfer
function Y, for easch value of N, as in Appendix A for N = 15 £t2
radian/sec, and the evaluation of the resultant error by equation (8).

The result is shown in figure & by curve A. Each point on this curve
corresponds to a different optimum transfer function and it is possible
to use this transfer function as a guide in designing the guidance system.
The value of this curve is that it can be used as a standard with which
to compare the performance of any system,

Also indicated in figure &4t is the operating range of noise magnitudes
corresponding to the class of targets and aspects previously mentioned.
At first it might eppear that each noise level would require a change in
the filter or system so as to maintaln optimum performance. However, as
indicated by curve B, 1f a system is optimized only at the mid-value of
the noise range shown here a&s the design value, the performance of this
system for other noise levels will deviate to a negligible extent from the
optimum over the range of interest. Thus, to obtain near optimum perform-
eance over the range of nolse magnitudes likely to be encountered it is
necessary to optimize only for the design value of noise. This is a very
fortunate fact, and one of obvious practical importsnce. In s similar
maenner it can be shown that a change in the break point of the nolse
spectrum would not greatly affect the minimum error curve shown in figure L4
as long as the noise spectrum is essentially flat over the bandwidth of the
optimum trensfer function of figure 2.

It is interesting to compere these results with the performance
obtalned by disregarding noise theory in the design, that is, by designing
the system for the fastest possible response. Two exsmples are shown.
Curve C illustrates the performance sgainst noise which is obtained for a
system with perfect response charscteristics (unity transfer function).
Curve D illustrates the performance sgsinst noise for a more realistic
system given in reference 11 (varisble-incidence missile)., For this case
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the important saturating elements were simulsted, and the system was
designed for the fastest possible response to a step in the beam of

100 feet. The comparison with the optimum of the curves for both of these
example systems shows that the performance is significantly poorer than
the optimum performance indicated by theory.

Application of Wiener Theory to the
Beam-Rider Guidance System

To achieve the optimum results indicated by the Wiener theory it is
necessary to design the guidance system with frequency characteristics
approximating the optimum specified by figure 2. The difficulties in
accomplishing this as well as the modifications which are required are
discussed in the following sections.

Iimitetions in the application of the Wiener theory.- There are
several restrictions on the possible forms of the transfer function which
can be achieved in practice. The foremost of these is manifested by a
consideration of the accelerations required of the missile. TFor the
optimum system, Yo, the mean square of the required acceleration YM is
expressed by

V2 =fm]Yo(iu)) [Zwtom(w) dw +f Yo (10) [Fwtoy(w)dw (9)

-0 -0

T+ is easy to see that for the form of noise spectrum given by equation (1)
and the optimum transfer function of equation (4) the spectral density of
the acceleration required by the noise increases with frequency at the high
frequencies, giving rise to an infinite called-for acceleration. Obviocusly
finite values of acceleration can be obtained only if the transfer func-
tion Yo falls off at high frequencles like l/w2 or some greater power.

To the control designer, this restriction is perhape more readily
interpreted in terms of a control-deflectlion restriction. Assuming, for
the sake of the argument, that the aerodynamic transfer function S/yM
were everywhere linear (which, of course, it 1s not, since practically,
control deflections cannot increase without limit), the analog of equa-
tion (9) would become

= - B + oN°

2
Oy(w)aw (10)

oo 2 oo
=f lYo(iw)|2|T8ﬁ(im) om(w)dw +[m l?o(iw)lz‘%{(iw)

—-—
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It can be seen from equations presented in later sections that 5/y
approaches a constant multiple of w® at high frequencies. Thus, e
conclusion can be drawn from equation (10) that finite values for the
control deflection will be obtained for any practlcal system which msy be
designed only if the system transfer function differs from the optimum &t
high frequencies.

At first it would appear that any departure of the system transfer
funetion from the optimum Y5 would result in increased rms error per-
formence. However, an examination of the error spectrum indicates that,
since the power contained in frequencies gbove 2 cps is small, attenuating
the transfer function above this frequency will not affect the error
appreciably. On the other hand, the control motion spectrum of figure 5
shows that attenuation in the transfer function above 2 cpe will greatly
reduce the required control motion since the major portion of control
motion power is concentrated in the higher frequencles. From these con-~
siderations 1t 1s obviously desireble to attenuate the transfer function
Yo Zfor all frequencies above the bandwidth of apprecieble error spectrum.

The attenuation might be supplied in a variety of ways. However,
if it is assumed that sn idesl filter could be inserted in the system so
as to supply infinite attenuation for all frequencies above 2 cps without
affecting the response to frequencies below 2 cps, it is still found that
for missiles similar to the one studled here deflections required for this
frequency band are larger than are availsble., Specifically, for the
missile used herein the control deflection required is sbout 15° rms;
since the control deflection is physically limited to ebout 14° (ref. 11},
the called-for control motlons are larger than are availaeble. Thus it
is impossible for the actual control motion to follow the reguired pro-
gram and the optimum missile motions cannot be achieved. Actually the
value of 15° is quite optimistic since the 1deal filter does not exist
and. cannot even be approached very closely. Consequently, the simultane-
ous achievement of the optimum error spectrum and cslled-for control
motions which do not exceed the limited values are conflieting require-
ments. The importance of this conflict and the solution of the problem
posed by it are considered in the following sections.

Cptimm filtering with limiting.- Because of the above restrictions
in the spplication of the Wiener theory, it is generally necessary to make
certain modifications in the practical case. In what follows, the effects
of limiting and the consequent modifications regquired are discussed.

Effects of limiting: There are many limiting-type nonllnearities
which may exist in & guidance system. Those of the most importance in
the beam-rider system are (a) control motion limiting due to mechanical
limitatione, (b) rate of control motion limiting due to restrictions on
servo capability, and (c¢) radar receiver voltage limiting due to cir-

- cuit restrictions. Typical values which are used in these studies are
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0.25 redian, 5 radians/sec, and 100 volts, respectively. The effects of
these limits can be severe and need to be considered in the filtering

problem.

By means of Booton's recent theory (ref. 12) it is possible to evalu-
ate the effects of nonlinearities on the over-all system performance. As
applied to the beam-rider system, the theory shows that it is possible to
approximate each of the satureble elements by a simple gain which can be
suitably chosen so that for increased rms inputs to the saturable element
this gain is reduced. Analysis shows that in terms of the over-sll sys-
tem characteristics the effects of this gain reduction are: (1) to reduce
the open~loop system gain or (2) to increase the time constents in the
open-lcoop transfer function. TIn general, both effects result in a reduc-
tion in bandwidth of the closed-loop frequeéncy response, In this respect,
then, limiting effectively results in additional filtering which, of
course, extends further into the low-frequency ranges as the rms inputs
increase., Thus the system response can become 80 slow as to result in a
large increase in error due to the missile's inability to follow the tar-
get motions. Furthermore, inspection of figure 2(b) shows that the Wiener
transfer function 1s conditionally stable; for large rms inputs the Wiener
transefer function may become unsteble.  That this does occur in examples
to be discusgsed later has been demonstrated during REAC studies. Conse-
guently the large gain reductlions and phase lags introduced by limiting
cannot be tolerated. '

Additional filtering: In genersl, the energy of the saturating quan-
tities contained in the higher frequencles is much larger than that in the
lower frequencies. TFor this reason, purposely lntroducing filtering into
the system so as to attenuate the response at the higher frequencies can
be effective in reducing the effects of limiting. This can be accomplished
in either of two ways: by lnserting additional networks in the guidance
system, or by changing those inherent time constants which exist in any
actual system and which are not required faor the optimum filtering.
Because of the complexity of the beam-rider guidance system there are a
great number of places vhere the additional filltering can be introduced.
These possibilities are discussed later.

The selection of the desired frequency characteristics of the added
filtering is more difficult then the selection of filtering location. In
general, the choice of the desired amount will involve a compromise between
two extremes: (1) The first extreme is one in which the added filtering is
too severe, As the added filtering is extended intoc the lower frequencies,
limiting effects are reduced but, as previously mentioned, the resulis of
limiting can only be eliminated &t the expense of increased error. (2) The
other extreme is one in which the added filtering is insufficient to avoid
serious limiting effects. This extreme is similar to the previous one
inasmuch as the effects of limiting are also equivalent to additional fil-
tering. For serious limiting, this equivalent filtering is too severe and
results in increased error and poseibly instebility.
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It is apparent that the effects of limiting and of added filtering
by means of networks are closely related, in that both are equivalent to
the introduction of additionsl filtering into the system. Extremes of
either type reduce the performance of the system sufficiently that the
error increases due to the inability of the missile to follow the target.

Design of the Guidance System

In gpplying the modifications discussed in the preceding parsgraphs
to the design of the guidance system it 1s found convenient to consider
two separate stages: The first stage involves the design of the system
on a linear basis to approximate the optimum Wiener transfer functiion,
while the second involves supplying the additional filtering terms to
minimize the limiting effects. The optimum Wiener transfer function may
be designed into the misslle-control system, or into the tracking radar,
or may be apportioned between the two, with the aedditional filtering in
either place. Thus, there are a number of possibilities. Obviously, for
linesr systems all approaches could be designed so as to produce identical
results., In general, this does not hold for nonlinear systems, that is,

- systems in which limiting occurs, so that in the practical case 1t is
necessary to consider the effect of the filtering location on performance.
The relative merits of placing the optimum Wiener flltering first in the
missile-control system and second in the tracking radar are discussed in
the next two sections.

Missile-control system designed for optimum Wiener filtering.- For
the case of missile-control-system filtering it is necessary that the
tracking radsr be designed fast enough to follow the target motion and
the noise, since the missile-control system performs the optimm filter-
ing operation. The first step in the design of the missile-control system
is the synthesis of a linear system which matches the optimum Wiener
transfer function. It has been shown thet it is only necessary to approx-
imate this transfer functlion over the frequency range of appreciasble error.
This can be accomplished in many ways, but to achieve this design by a
system of conventional form, the design is most easily made by cut-and-try
procedures. In this procedure 1t is desirable to select the aerodynamics
as a starting point since the design of the airframe is relatively inflexi-
ble compared to the design of the control system. The characteristies of
e typicel varlable-incidence missile were chosen from reference 11. The
transfer functions in the yaw plane for this missile are given by the fol-
lowing equations:

¥ Ty + 1
8~ 735(Ta2s® + 20, Tas + 1)




Security Classification of This Report Has Been Cancelled

14 SRR NACA RM A55E11l

Iy Tp282 + 28, Tys + 1

8 T T 252(Ta282 + 2 Tgs + 1)
8 a a8-8

Table I summarizes the values of the parameters for this missile for a
given operating condition which is held fixed in this report. For this
missile it is possible to syntheslize a linear system to approximate
closely the optimum transfer function. One possible system 1s 1llustrated
in figure 6 and the corresponding over-all open-loop transfer function 1is

kokgV (Tro8 + 1) (Tas + 1)(Ty2s2 + 24, Tps + 1)

H = T + kgks 82(T118 + 1) (Tgs + 1)(as® + be2 + cs + 1) (1)

The derivation of this transfer function 1s given in Appendix B. It
should be noted that the transfer function of equation (11} differs from
that of equation (5); however, by choosing the parsmeters as given in
Appendix B and as tabulated in table II, column CD s the two transfer
functions can be closely matched over the frequency range of interest as
illustrated by the dotted curves of figures 2 and 3. It might be noted
that the only restriction on the parameter Tg in order to keep the two
transfer functions closely matched is that it be small. Thus Ts mey

be varied somewhat without much penalty.

The particular design discussed gbove has been chosen only for optimum
nolse performance so that other comsiderations important 1n an over-all
design might dictate certain modifications. These possibilities are dis-
cussed later. It is also apparent that since the design of the above
system has been based on assumptions of linearity the performance indicated
above cannot be achieved in practice due to limiting effects. As indicated
earlier these limiting effects may result in instability. Hence modifica-
tions are required. These modifications in the two cases of additional
filtering, first in the tracking radar and second in the missile-control
system, are discussed in the following paragraphs.

Additional filtering in tracking radar: The simpler means of intro-
ducing additional filtering into the guidance system in order to reduce
limiting is to place 1t in the tracking radar since the added filtering
and optimm Wiener filterlng are achieved separately by the tracking redsr
and missile-control system, respectively. This separation has the advan~
tage of allowing the additional filtering to be altered without affecting
the optlmum filter design of the missile-control system.

The additional filtering in the tracking radar may take inmumerable
forms. For this study the closed-loop transfer function of the tracking
redar was assumed to be of the following form:

B _ Tas + 1
Io F ¥ TiBs2 + TiB + 1 (12)
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This transfer function was chosen to provide both simplicity and a zero-
veloclity error system and 1t can be approximated by properly shaping the

- networks in the tracking radar. With this system, the amount of filtering
can conveniently be varied by & change in the time constant T3i. At the
one extreme for which 711 1s very small the filtering provided by the
tracking radar is negligible, thus resulting in sn unstable missile-control
system because of limiting effects. As the time constant of the radsr is
increased, however, more filtering is provided and limiting effects are
reduced. By vearying T31 figure 7 was obteined; it shows the variation
of rms error with the natural frequency, l/EﬁTl, of the tracking radar.
For comparison, the minimum error obtalned from Wiener theory is alsc
shown. As would be expected from previocus discussion, the optimum opera~
ting point occurs at & tracking redar frequency which is within the pass-
band of the missile-control system. At this frequency limiting effects
8till exist but are not too serious. The increase in error above the
Wiener theory result can be attributed to the additional filtering intro-
duced in the tracking radar and to the limiting effects in the missile-
control system. The rms error performance of the system defined by the
optimum operating point is given by curve E in Ffigure 8 against a varisble
noise level.

- Additional filtering in missile-control system: An alternatlive place
to Introduce sdditional filtering into the guldance is the missile-control
system, This could be introduced by an additional network in the radar

b receiver. However, since 1t has been pointed out that the choice of time
constant Tz was somewhat arbitrary, it 1s possible to increase Ts to
provide this additional filtering. Thus limiting effects can be reduced.

The introduction of added filtering into the missile-control system
has the disadvantege that the added filtering also affects the system
stability since an increase in & time lag is destabilizing. Hence, added
stability is required. This could be provided by altering any of the
basic’ parameters which are responsible for the conditlonal stability
characteristic of the Wiener transfer function. To preserve the low-
frequency characteristics of the optimum system as few changes as possible
are desired, The parameter T;; 1s a convenient one with which to intro-
duce this stability.

The effects of the gbove changes were investigated by meens of analog
simulation., Since in the case of missile-control-system filtering the
tracking radar is not required to filter, it should be designed to respond
quickly. For this purpose the radar transfer function of the form of
equation (12) was utilized by choosing the constants so as not apprecisbly
to alter the input spectra. This was accomplished by the choice of a
tracking radar natural frequency of 6 cps. The paremeters in the missile-

B control system were altered sccordingrto the sbove discussion. Typical
results obtained for the system optimized only at the design value of
noise are illustrated by curve F in figure 8. The optimum Wiener perform-
ance is repeated here., In general, results similsr to curve F can be
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obtalned by several different combinations of paremeters. One of these
cambinations requlring the fewest modifications from the Wiener system is
glven by the parameters in column C) of table II. It can be seen that
the additional filtering is supplied by an increased radsr receilver net-
work time comstant Ts while the added stabllity is introduced by =
decrease in the time constant T;;. In this case the increase in error
above the optimum is due to the added filtering introduced by the network
end limiting, and to the slight alteratlon in the Wilener system time con-
stant Ti;. : : - -

Tracking radsr designed for optimum Wiener filtering.- In this section
are considered the results obtainable when all of the optimum filtering is
located in the tracking redar. Here the desired optimm tracking radar
transfer functions are given by equations (L) and (5), and ideally the
missile-control system should have a transfer function of unity. However,
for meny reasons, principally those arising from nonlinear effects, the
latter may be expected to depart considerably from the idesl. Consequently
it ie desirable to design the missile~control system for the fastest pos-
sible transient response within the limitations of these nonlineasrities.
Two such missile-control systems were considered., The Pirst was a con-
ventional system chosen from reference 11l in which the response time to
a8 step of 100 feet in the besm was minimized. The second was a system
optimized for minimum response time to a small enough step so that lin-
earity was not exceeded. The control-system parameters for these systems
ere given in columns @ and @ » respectively, in table TII.

The rms error performance obtainsble for tracking-radsr filtering
is summarized in figure 8 by curve G. It was found that both the
missile-control systems gave essentlally the same results. In this case
the Increase 1n error above the Wiener optimum is due to slowness of the
missile~control system and its failure to follow the beam perfectly
because of limiting effects,

It might appear that these limiting effects could be reduced by addi-
tional flltering in the tracking rader. This poseibility was explored by
the addition of a simple first-order filter to the optimm open-loop trans-
fer function given in equation (5). By increasing the time constant of
the added filter the tracking-radar performsnce 1s deteriorated from the
theoretical optimum while the error of the missile-control system 1is
decreased because of a reduction of limiting effects. Results of these
combined effects are shown in figure 9 from which 1t can be seen that the
added filtering results in progressively poorer over-all performance. Thus
the beneficial effects of decreased limiting are overbalanced by the detri-
mental effects of altering the tracking-radar transfer function fram the
optimum,
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Comparisons and Other Considerations

The results of various filtering arrangements are compared in fig-
ure 8 on the basis of the rms error. If it were not for the nonlinearities
the performance for both missile-control system filtering snd tracking-
radar filtering could be made identical with the performance of the optimum
Wiener system., However, it 1s interesting to find that even in the non-
linear case all arrangements can result in comparsble error performance.
Some advantage in tracking-radar filtering-is apparent from the figure.
For camparison, again, the performence of a typical missile-control system
which was optimized for fast response in the absence of noise is repeated.

Up to this point only the error performance has been considered.
Other fsasctors which are of importance in the over-all evaluation of & guid-
ance system will now be discussed. One such factor is the servo energy
required to achieve a given error performance. For a servo system already
designed to meet the maximum expected hinge moment, the servo power is
proportional to the time average of the sum of the absolute displscements
of & between values at which & changes sign. Thus the average Servo
power for & time t is

average Servo power -~ Z—L?;I

Evaluation of the servo power for the systems discussed gbove has shown
that both methods of missile-control-system filtering require sbout

22 percent more power than does tracking-radar filtering. Thus in an
over-all evaluation based both on rms error performsnce and servo energy
requirements it is apparent that tracking radar filtering is slightly
superior. '

There may be still other factors of importance in guidsnce system
design even within the framework of the assumptions discussed earlier,
Usually these requirements are related to the specific design objectives
of the system end may dictate certain modificaetions such as the choice of
filtering location or alterations in certain individual transfer functions
of the system. TFor example, for short-range missiles in which launching
errors are not prevented from bullding up, caepture of the beam in minimm
time may be important enough that tracking-radar filtering would be pref-
erable to missile-control-system filtering because of the fast response
which can be designed into the missile-control system. In other cases
it may be desirasble to alter the design of the system somewhat for any of
a number of reasons. Requirements of simplicity on certain parts of the
system or the necessity of using certain fixed and unalterable elements in
the design are examples. Another possibility 1s that for f£light conditions
in"%hich serious atmospheric turbulence exists it might be necessary to
- meke certaln alterations to minimize the response to gusts. An investigs-

tion of such factors is beyond the scope of this report.
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CONCLUDING REMARKS

This study has considered the application of Wiener filter theory to
the optimization of a beam-rider system operating In the presence of noilse.
The Wiener theory has been used to establish both the theoretical lower
limit of error and the desired tramsfer-~function characteristies. Although
these transfer-function characteristics might be expected to vary with
noise megnitude, it has been found that when the transfer function is cho-
sen to be optimm for only a mid-value of nolse the performance for other
noise levels deviates to a negligible extent from the optimum.

In general, linear beam-~rider systems can be synthesized to produce
theoretical optimum performance, but the practical achievement of these
results is restricted.by limiting of control deflections, rate of control
deflections, and radar receiver voltages. With suitable modifications,
however, the theory can be useful as a guide in system design. Optimize-
tion in the sctual nonlineear case is shown to involve two considerations:
limiting and additional filtering. It ls shown that the important types
of limiting tend to result in system lnstability. However by appropriste
placement of additional network filtering it is possible to minimize these
limiting effects without serious deterioration.of the error performance.

The design of a gulidence system is most convenlently accomplished in
two stages: The first consists of designing the system on a linear basis
to approximate the Wiener transfer function, and the second of supplying
the additional filtering terms to minimize the limiting effects. The
application of the Wiener theory and the modifications required to arrive
at an optimum system design have been illustrated in this report by con-
sidering systems in which the optimum Wiener filtering is designed into
either the missile~control system or the tracking radar, and additional
network filtering supplied in either place. It was found that comparable
error performance can be achieved by any of the methods. Considersation
of both rms error and servo energy requirements for the cases studied
indicates that optimum filtering in the tracking radar 1is sllightly superior

to that in the missile-control system.

In modifying the results of the Wiener theory in order to minimize
the effects of limiting, the best resulis were, in general, obtained when
the additionel filtering was added in such a way as to tend to keep the
operation of the system in the linear rarige. This has suggested the pos-
sibllity of seeking an optimum solution based on the stipulation that the
filtering should restrict the operstion of the system to within 1ts linear
range. In reference 13 the results of such an analysils are presented and
compared ta those of the present report.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., May 11, 1955
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APPENDIX A
DETERMINATION OF THE OPTIMUM WIENER FILTER

Wiener's solution for the optimum transfer funetion Yo can be
expressed by the following equation:

elat
Yo(iw) = ¢+(w)f 'iwtf Ezii)(m—)a— do dt (A1)

where O represents the target motion spectrasl density, and the quanti-

ties @t and o~ are defined as the factors of a certain function ¢ with
poles and zeroces located in the upper and lower half-planes, respectlvely;
the factor & is defined as equal to O + @y so that

® = &p + Oy = 00" (a2)
- For the case to be comsidered here, the target motiorn and noise are
defined by
- ka.2
= A
or rw* (w2 + k=) (43)

It will be noted that the noise spectrum has been approximsted here by a
constant in order to reduce the complexity of the calculations. This
approximation is valld because the more exact form of the nolse spectrum
(eq. (1)) is essentially flat over the bandwidth of the optimmum transfer
function, Use of the more exact form of the nolse spectrum affects only
the response at the high frequencies which are beyond the range of inter-
est. It should also be pointed out that the use of equation (A3), as
such, leads to certain mathematlical difficulties in evaluating the right-
hend side of equation (Al), because the theory requires that the poles
of &p not be located on the real axis. Rigorously, to avoid these
difficulties s it is necessery to modify the target motion spectral density
to the following:

- ka®
°T = @ 1 1B (P + 2P (P & BB (45)

where 713 and 7z &are sny small resl mmbers. Thus the solution of equa-
tion (Al) is & function of iw, 7M1, and 7Mz. The desired answer is then
. obtalned as the limit of Yo(iw,f1,7=) @8 71 and 12 approach zero.
) However, it can be shown that the same answer can be obtained more simply
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by taking 1, and nz equal to zero as would be obtained fram the rigor-
ous process described above. It will be convenient to retailn the n's
for a few lines; subsequently they will be dropped. According to equa-
tion (A2) +then,

o8 + kKPat 4+ (ka2/nN)

(ou + ini) (e + 1n2) (o - in1) (o - in2) (a® + k2)
(A6)

¢ (a)

¢T+¢N

(@ - a1)(@ ~ ap) (o - ag) (e + a1)(a + ap) (o + aa) (a7)

o) = N T T (2 7 ) (a = 110 (8 = i) (o s 1) (o = i)

where a3, as, and ag represent roots in the upper half-plane. It should
be noted that none of these roots are real. Fram equation (A2) also, 1t
follows that '

o) = X e = N e T
(48)
3 (a) = A ta)letap)(a+ as) _ ~p(-a)
(@ + 1n2) (o + in2) (@ + 1k) ~ (o + in1) (@ + in2) (e + 1k) (9)
According to the definition given above
pla) = (¢ - a1) (e - a2)(a - ag)
= o® + bza? + by + bg (A10)
and
-p(-a) = a® - bz0? + Daa - bo (A11)
where
bo = ~(a1 + ae +'0a)
b1 = @10z + G108 + Gp0a (a12)

bo = ~a10zus
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The inner integral of equation (Al) is

_ [T ep(a)elaty, g2 [T it |
= —Im 0™ () o= ~./.; (e - ik) (o + 21) (@ + a2} (o + as)
- Iﬂ}Lszf(a,)da. - (A13)

In the above expression it should be noted that it has been assumed 13
and 1 are zero in order to simplify the following expressions. Now if
o 1is considered to be a complex variable, the above integration is
equivalent to integration over the contour shown below.

Imag(a)

¢+ =ik I1

Real
=0 — c (@)

—

Here the only two poles involved sre a second-order pole at the origin
(ectually at in1 and inm, in the rigorous case) and a first-order pole
at o = ik since, as indicated above, -ai, ~as, and -ag lie in the
lower half-plane. The pertinent residues can be found 1n the ususl man-
ner as shown below:

Res(o) = 1lim L& [a2P(a)]
o >0 Ao
_ £ __ 1kb; + bo
=+ Tog e (A1k)

lim [(a - ik)£(x)]
o > ik

Res (ik)

- e-kt e-kt

T 020k + a1) (1K + o2) (1K + ag)  -k2[-p(-ik)] (A15).
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Hence the integral in equation (Al3) becomes

ikby + b t e-kt
2ka2i 10 4 }
* {- k®bg? Kbo -k*[-p(-ik)]

2 t_ -k£
ke, 1[71 + Eos * 72° _} (A16)

I;

where the definitions of ¥, and 7, are epparent.

The second integration in equation (Al) is merely a Fourier transform
and is found as follows:

[o2])
I, = f e-iwtr,at
C

2ka2i / [71§‘iwt + E%S e~iwt 72e‘(k + iw)t}dt (A17)
o .

Thus,

71 7
2ke21 2__
[ k‘Do(iw)2 k + iw]

(71 + 72)(iw)2 + (%71 + E%a>iw + éL

(iw)2(k + iw)

-
n
Il

oka2i (418)

It should be noted that because 131 and 1o were assumed to be zero for
simplicity, questions concerning the exlistence of the above integral
arise. However if the analysis is msde without this assumption, i1t can
be shown that the integral in equation (A17) does exist, and that the
limit of this integral as 13 and 1, go to zero becomes precisely equa-
tion (A18). The coefficients in this equation can be simplified to &
more useful form by the following development. From the definitions
given earlier in equations (A6) through (A9),

a® + KBat + 2 = [p(a)][-p(-a)]

which at o = lk becches

K82 - b2 = [p(ik)}[-p(~1k)] ]

N
S
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When this relation is substituted in the definition of 7y, given in
equation (Al6),

y = 1 - p(ik)
2~ xB[-p(-ik)]  (-k2)(-bo>)

-ik® - bok® + Ibik + bg
ko2

Thus the coefficients in equation (A18) simplify to

ik + b
Tt Y= T

ib
k7l*'E%6"' bo

The transfer function Yo ca&n now be found from the preceding
equations as

: ol ‘W( 1)< JMX +l> e

which, in terms of the conventional complex frequency s = iw, reduces to
the followlng alternmative forms:

W
<£s+_basa (.%)Hl
(}s + %) + i}é§-+ %)

Y(s)=<ik+b2b>: (11:_1}+l> -

2 _ ib1

" bo bo

Yo(s) =

T 282 + 20 Tys + 1
(Tgs + 1) (7,282 + 2L, Tys + 1)

Yo(s) =

J
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where
T2 = = EETE;EQ Tyz - - aé%E
2L Tq, = - ?Dl:ﬂ 2lyTy = 1 B8
T = &y

In terma of the equivalent open-loop transfer function, py, of a unity
feedback system,

o _Yols)
kol®) = T
(- fpta)e o (- 2% 1 a
bg o o
1k
82<§ + l)
To2s2 + 20, Tes + 1
= 82(Tys + 1) (a21)
where
b
ku = 7§

The coefficients of the transfer function of the optimum system have
been evaluated for the following velues of target motion and noise:

k = 0.4
T =5 gec
a=1g¢g

N

15 £t2/radian/sec

Evaluation of the numerator of equation (A6) gives
2
& B 4 - o8 4
a® + KPa®* + %ﬁr a® + 0.16 ao* + 8.8

= (0 =~ a1} (o - ag)(a - ag)(a + az)(a + ag) (a + aa)
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where *
- Gy = i l.ll-56
as = 1.427 exp(i 0.543)
ag = «1.427 exp(~1 0.543)

which are all located in the upper half-plane. These roots are then
sufficient to determine the optimum transfer function. The constants in

equation (Al12) give
ba = i 2.9""

by = -4.201

bo = 1 2.97

Then evaluating the psrameters below equation (A20) and in equation (A21)
gives the following values:

- Parameter Value

Ta, 0.925
. [ 765
Tg .687
Toy .T700
Ey 519
A 2.50
ky, 7.h2

From these parameters the optimum transfer function of equation (A20)
becomes

(0.855 82 + 1.41 &8 + 1) (a22)
(0.687 & + 1)(0.490 82 + 0.727 s + 1)

Yo(s) =

and from equation (A21) the equivalent open-loop transfer function becomes

(0.855 82 + 1.41 s + 1)
82(2.50 8 + 1) (423)

po(s) = 7.k2
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APPENDIX B -

MISSTIE-CONTROL~-SYSTEM APPROXIMATION TO THE OPTIMUM

TRANSFER FUNCTION

An optimum linear design is illustrated in figure 6, and in the fol-
lowing the system equatlons are derived. From figure 6,

¥ (g) = kg (Tys+1) (Tas+l)

En Tge(T18+1) (Te®sZ+28 g Tas+1) (Tas+l)+kgkss (Tys+1) (Tos+1) (51)
To simplify equation (Bl) it is convenient to meke Ty = Tm. This cholce
is not essential but its use leads to more easily handled equations. In
certain cases where gust disturbances are serious it may be more desirable
to choose Tz small. With the former assumption, however,

R
B ()
_ kg (Tys+1)
[ (TaTe>T1) 8%+ (TqTa®+Ta2¢8 g TaT1) 82+ (TaT1+T32 L g TatkekaTs ) 8+(Ta+kgka ) ]
_ kg Tme+1
= Ta+kgkas s(asc+bs2tcs+l) (B2)
where
_ _T3Te3Ts o _ .W
& = T3 T kgke
p o Za(Te® + 2LaTaTs) > (B3)
T + kegks '
_ 28,TaTq + T1Tq + kegkaTo
¢ = Ta + kgks
J
Thus the entire open-loop transfer function can be written as
¥ v (Tes + 1) (Tios + 1)(Tp2s2 + 28, Tps + 1)
po= <M koks - ol b (Bl)

£ ~ Tg + kska 82(Tgs + 1) (T118 + 1)(as® + bs2 + c8 + 1)

It 1s desirable to choose the parameters in this equation so as to mateh
the optimum transfer function glven in equation (A21). Since the system
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equation (BY) is of much higher order than the optimum, 1t is apparent
that the matching cannot be accamplished perfectly. However, as shown

in the text 1t is only necessary to approximste the optimum transfer func-
tion over a limited frequency band. This can be sccamplished by choosing
certain terms in (B4) to correspond to terms in (A21). The remaining
terms should then be chosen to have negligible effect on the optimum error
spectrum,

There are many ways the design can be accomplished., No attempt will
be made to investigate all the possibilities. One design, however, is
based on the following correspondences:

Ty <> Tg
Tio <> Ty
T11 <> T

The remalning terms can be chosen in any menner as long as their effect
is small over the optimum error spectrum. One of the many possible
choices is to factor the cubic to spproximete the aerodynamic term in the
numerator as follows:

. a8 + bs2 + cs + 1 = (Tp®82 + 2L Tps + 1) (Tps + 1) (B5)

where Ty 1s arbitrarily chosen to be small. This factoring is not
essential to the design but it leads to simple equations for the control-
system parameters. For example, for glven aerodynamics and choice of

T;, the coefficients of the left side of (B5) are determined by

a = TLTba
c = TL + Engb

Solving equation (B3) then for the control-system parameters gives

Tl = TLszTa ~ lIlI. .‘
T 2ty TpTrTe + Tp=(Ta - 285Tr)
2 m.2 - 2
kgka =,E%§%Egi - Tg ~ T —E-EEEEQ%> ) (BT)
o 2
) Tp = E;ggg—ﬁgg (EpTb = £aTa) + T2 + 28,Tp )
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Then the value of kpkg 1s determined from the desired geln:

kokg =]qLEQ;%ﬁ§E§

It will be noted that since only kokg and kgks are specified, one of
the three may be chosen srbitrarily. The numerical values of the sbove
parameters have been calculated and are listed in column () , table II.
It should be pointed out that thils design is only one of many possible
designs. 1In any particular case certain modifications may be necessary
as discussed in the section on coamparisons and other consideratioms.



Security Classification of This Report Has Been Cancelled

NACA RM ASZELL . 29

13.

REFERENCES

Jemes, Hubert M., Nichols, Nathaniel B., and Phillips, Ralph S.:
Theory of Servamechanisms. McGraw-Hill Book Co., Inc., 1947.

Booton, R. C., Jdr.: Optimum Design and Miss Distributions of Homing
Misgsiles, Meteor Rep. 50, Dynamic Anslysis and Control Leb.,
M.I.T., Mar, 1950.

Booton, R, C., Jr., and Seifert, W. W.: The Effect of Nolse on
Limited-Acceleration Homing Missiles. Rep. No. 60, Dynamic
Analysis and Control ILab., M.I.T., Jan., 1952.

Wiener, Norbert: Extrapolation, Interpolation, and Smoothing of
Stationary Time Series With Engineering Applications. The
Technology Press, M.I.T., 1949,

Hastings, A. E., and Meade, J. E.: Improvement of Radar Tracking.
Rep. R-342L, Naval Research Lsb., Feb. 1949,

Meade, John E., Hastings, A. E., and Gerwin, Harry L.: Nolse in
Tracking Radars. Rep. 3759, Naval Research Lab., Nov. 1950.

Hestings, A, E., Meade, John E., and Gerwin, Herry L.: Noise in
Tracking Radars. Part II, Distribution Functions and Further
Power Spectra. Rep. 3929, Naval Reseerch Lab., Jan. 1952.

Brockner, C. E.: Angular Jitter 1n Conventlonal Conical-Scanning
Automatic-Tracking Redar Bystems. Proe., of the I.R.E., vol. 39,
no. l, J&n. 19513 PP. 51"55.

Tawson, James L., and Uhlenbeck, George E., eds.: Threshold Signals.
McGraw-Hill Book Co., Inc., 1950.

Levinson, Norman: A Heuristic Exposition of Wilener's Mathematicsal
Theory of Prediction and Filtering, Jour. Math. and Physiecs,
vol. 26, no. 2, July 1947, pp. 110-119.

Matthews, Howard F., and Stewart, Blwood C.: A Comparison of the
Calculated Maximum-Maneuver Response Characteristics of Three Air-
to-Air, Beam~-Rider, Gulded Missiles Having Different ILift Ratios.
NACA RM A51F18, 1951,

Booton, Richsrd C., Jdr.: Nonlinear Control Systems With Statisticsal
Inputs. Rep. No. 61, Dynamic Analysis and Control Lab., M.I.T.,
Mar. 1952.

Stewart, Elwood C.: Applicatlon of Statistical Theory to Beam-Rider
Guidance in the Presence of Noise. II - Modified Wlener Filter
Theory. NACA RM AS55Ella, 1955.



Security Classification of This Report Has Been Cancelled

TABLE I.- SUMMARY OF AERODYNAMIC PARAMETERS FOR EXAMPLE MISSILE

Parameter Value
o, 0.0775
Tp 0552
T 2.087
g2 .00079L
T 8h6
Ce. .0536
to .0220

TABLE IT.~- SUMMARY OF CONTROL-SYSTEM PARAMETERS

@ ® ® ®
TIinear Nonlinear Nonlinear Linear
Persmeter| mjgsile-control | missile-control missile-control migsile-control
system optimum system optimum system optimum system optimum
with neoise with nolse for 100-foot step yp for step "yg
ko 0.25 0.25 1.0 0.60
Ty .912 .912 .32 .25
Ts .01593 .29 .0559 .02
Tio0 .912 912 - - - - = =
T13 2.5 .80 - - - - - =
kg .Ok62 .0L62 .0358 .0358
T1 .01603 .01603 .025 .025
ka by 2 Wy 2 Ly 2 55
To .0122 0122 L0721 .018
Ta 846 .8u6 .86 846

ot

TTHCCY W VOVN
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: guidance system
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] |
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(b) Block diagram.

Figure 1.- Beam-rilder guidance system.

MG

TTHCGY WM VOV

Tt




Security Classification of This Report Has Been Cancelled

32 L 1 NACA RM AS55E1l

|
Wiener theory
———— System approximation

Amplitude --30

Log amplitude response, log;o |Y,|, lorus
Phase angle, degrees

I
N

1 ] | I N 2 | 1 ] | I S I ] 1 1 lrllll_lzo
Ol A 1.0 10

Frequency, cps
(a) Closed-loop transfer function, Y,.

Figure 2.- Optimum transfer functions.
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Log amplitude response, 10g;o | ol lorus
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(b) Open-loop transfer function, p..

Figure 2.~ Concluded.
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——~— System approximation

.~ Noise component
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Frequency, cps

Figure 3,~ Spectral density of error components.
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Optimized for no noise:

System with [imiters

System with unity
transfer function

Operating range .
| Optimized for design
value, Wiener theory

| Minimum error,
Wiener theory

0 10 20 30

Noise spectral density magnitude, N,ftz/rudion/sec

Figure 4.~ Optimum performance by Wiener theory.
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_3 \

Target component \
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Log,, spectral density of control-motion components, lorus
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Figure 5.~ Speétral density of control motion components.
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Figure 6,.- Linear-system approximation of optimum transfer fumction.
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Figure 7.~ Effect of additional filtering in tracking radar; missile-
control system designed for optimum Wiener filtering.
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* E. Missile-control system designed for optimum Wiener
filtering with additional filtering in trocking radar
. F. Missile-control system designed for both optimum
Wiener filtering and additional filtering
G. Tracking radar designed for optimum Wiener filtering
50
L Optimized for no
noise (with limiters)
E Missile-control
system filtering
(with limiters)
40 F
G
< rr;l:ll?ck_ing radar
@ iltering
& 30 (with limiters}
‘ k%
h.
- =)
=
o
O B
Z 20
Minimum error,
Wiener theory
(no limiting)
10
Design value
0 1

o 10 20 30
Noise spectral density magnitude, N, ft2/radian/sec

Figure 8.~ Effect of practical limite on minimum error; optimum for

design value.
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Figure 9.- Effect of additional filtering in tracking radsr designed for
optimum Wiener filtering.
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